Search results: Found 4

Listing 1 - 4 of 4
Sort by
Neuronal Self-Defense: Compensatory Mechanisms in Neurodegenerative Disorders

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197590 Year: Pages: 190 DOI: 10.3389/978-2-88919-759-0 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

Neurodegenerative disorders are characterized by the progressive loss of specific populations of neurons with consequent deterioration of brain's function and dramatic impact on human behavior. At present, there are no effective cures for neurodegenerative diseases. Because unambiguous diagnosis is possible only after manifestation of symptoms, when a large proportion of neurons has been already lost, therapies are necessarily confined to alleviation of symptoms. Development of cures halting the disease course is hampered by our rudimentary understanding of the etiopathology. Most neurodegenerative disorders are sporadic and age-related and - even for those of known genetic origin - the mechanisms influencing disease onset and progression have not been fully characterized. The different diseases, however, share important similarities in the mechanisms responsible for neuronal loss, which is caused by a combination of endogenous and exogenous challenges. Trophic deprivation, oxidative stress, accumulation of abnormal protein aggregates, and bioenergetics defects have been described in most, if not all, neurodegenerative disease. To counterbalance these noxious stimuli cells deploy, at least during the initial pathogenic states, intrinsic neuroprotective responses. These are general compensatory mechanisms, common to several neurodegenerative conditions, which reprogram cellular physiology to overcome stress. Adaptation includes strategies to optimize energetic resources, for instance reduction of rRNA synthesis to repress translation, suppression of transcription, and bioenergetics and metabolic redesign. Additional mechanisms include potentiation of antioxidant capacity, induction of endoplasmic reticulum (ER) stress, and activation of protein quality control systems and autophagy. Ineffective execution of these compensatory strategies severely threatens cellular homeostasis and favors onset of pathology. Therefore, a better understanding of these "buffering" mechanisms and of their interconnections may help to devise more effective therapeutic tools to prolong neuronal survival and activity, independently of the original genetic mutations and stress insults. This Research Topic focuses on the initial compensatory responses protecting against failure of those mechanisms that sustain neuronal survival and activity. The collection intends to summarize the state-of-the-art in this field and to propose novel research contributes, with the ultimate goal of inspiring innovative studies aimed to contrast progression of neurodegenerative diseases.

Genetic and Genome-Wide Insights into Microbes Studied for Bioenergy

Authors: --- --- --- --- et al.
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450855 Year: Pages: 186 DOI: 10.3389/978-2-88945-085-5 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

The global mandate for safer, cleaner and renewable energy has accelerated research on microbes that convert carbon sources to end-products serving as biofuels of the so-called first, second or third generation – e.g., bioethanol or biodiesel derived from starchy, sugar-rich or oily crops; bioethanol derived from composite lignocellulosic biomass; and biodiesels extracted from oil-producing algae and cyanobacteria, respectively. Recent advances in ‘omics’ applications are beginning to cast light on the biological mechanisms underlying biofuel production. They also unravel mechanisms important for organic solvent or high-added-value chemical production, which, along with those for fuel chemicals, are significant to the broader field of Bioenergy. The Frontiers in Microbial Physiology Research Topic that led to the current e-book publication, operated from 2013 to 2014 and welcomed articles aiming to better understand the genetic basis behind Bioenergy production. It invited genetic studies of microbes already used or carrying the potential to be used for bioethanol, biobutanol, biodiesel, and fuel gas production, as also of microbes posing as promising new catalysts for alternative bioproducts. Any research focusing on the systems biology of such microbes, gene function and regulation, genetic and/or genomic tool development, metabolic engineering, and synthetic biology leading to strain optimization, was considered highly relevant to the topic. Likewise, bioinformatic analyses and modeling pertaining to gene network prediction and function were also desirable and therefore invited in the thematic forum. Upon e-book development today, we, at the editorial, strongly believe that all articles presented herein – original research papers, reviews, perspectives and a technology report – significantly contribute to the emerging insights regarding microbial-derived energy production. Katherine M. Pappas, 2016

Genomics Research on Non-Model Plant Pathogens: Delivering Novel Insights into Rust Fungus Biology

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198146 Year: Pages: 166 DOI: 10.3389/978-2-88919-814-6 Language: English
Publisher: Frontiers Media SA
Subject: Botany --- Science (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Fungi of the order Pucciniales cause rust diseases on many plants including important crops and trees widely used in agriculture, forestry and bioenergy programs; these encompass gymnosperms and angiosperms, monocots and dicots, perennial and annual plant species. These fungi are obligate biotrophs and -except for a few cases- cannot be cultivated outside their hosts in a laboratory. For this reason, standard functional and molecular genetic approaches to study these pathogens are very challenging and the means to study their biology, i.e. how they infect, develop and reproduce on plant hosts, are rather limited, even though they rank among the most devastating pathogens. Among fungal plant pathogens, rust fungi display the most complex lifecycles with up to five different spore forms and for many rust fungi, unrelated alternate hosts on which sexual and clonal reproduction are achieved. The genomics revolution and particularly the application of new generation sequencing technologies have greatly changed the way we now address biological studies and has in particular accelerated and made feasible, molecular studies on non-model species, such as rust fungi. The goal of this research topic is to gather articles that present recent advances in the understanding of rust fungi biology, their complex lifecycles and obligate biotrophic interactions with their hosts, through the means of genomics. This includes genome sequencing and/or resequencing of isolates, RNA-Seq or large-scale transcriptome analyses, genome-scale detailed annotation of gene families, and comparative analyses among the various rust fungi and, where feasible, with other obligate biotrophs or fungi displaying distinct trophic modes. This Research Topic provides a great opportunity to provide an up-to-date account of rust fungus biology through the lens of genomics, including state-of-the-art technologies developed to achieve this knowledge.

Transcriptional Regulation in Cancers and Metabolic Diseases

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197125 Year: Pages: 98 DOI: 10.3389/978-2-88919-712-5 Language: English
Publisher: Frontiers Media SA
Subject: Oncology --- Medicine (General) --- Internal medicine
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

The transcription factor (TF) mediated regulation of gene expression is a process fundamental to all biological and physiological processes. Genetic changes and epigenetic modifications of TFs affect target gene expression during the formation of malignant cells. Extensive work has been done on the critical TFs in various disease models. Despite the success of numerous TF-targeted therapies, there remain significant hurdles understanding the mechanisms, transcriptional targets and networks of physiologic pathways that govern TF action. This effort is now beginning to produce exciting new avenues of research. A clinically relevant topic for genetic change of TF is the mutant isoforms of p53, the most famous tumor suppressor. The p53 mutations either results in loss of function, or acting as dominant negative for wild-type protein, or ‘gain of function’ specifically promoting cancer survival. The gain of function is achieved by shifting p53 binding partner proteins, or changed genomic binding landscape leading to a cancer-promoting transcriptome. Another example of genetic change of TF causing malignancy is the AML-ETO fusion protein in the human t(8;21)-leukemia. The fusion protein is an active TF, and more interestingly, new studies link the disease causing role of AML-ETO to the unique transcriptome in the hematopoietic stem cells. Nuclear receptors (NR) are a group of ligand-dependent TFs governing the expression of genes involved in a broad range of reproductive, developmental and metabolic programs. Genetic changes and epigenetic modifications of NRs lead to cancers and metabolic diseases. Androgen receptor (AR), estrogen receptor (ER) and progesterone receptor (PR) are well studied NRs in prostate, breast and endometrial cancers. The development in sequencing technology and computational genomics enable us to investigate the transcription programs of these master TFs in an unprecedented level. This Research Topic aims to present the most up-to-date progress in the field of transcription regulation in cancers and metabolic diseases.

Listing 1 - 4 of 4
Sort by
Narrow your search

Publisher

Frontiers Media SA (4)


License

CC by (4)


Language

english (4)


Year
From To Submit

2017 (1)

2016 (2)

2015 (1)