Search results: Found 14

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
An Updated View on an Emerging Target: Selected Papers from the 8th International Conference on Protein Kinase CK2

Authors: --- --- ---
ISBN: 9783038424130 9783038424123 Year: Pages: 320 DOI: 10.3390/books978-3-03842-413-0 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Medicine (General)
Added to DOAB on : 2017-07-12 07:57:21
License:

Loading...
Export citation

Choose an application

Abstract

The 8th International Conference on Protein Kinase CK2 (www.uks.eu/ck2), organized by Matthias Montenarh and Claudia Götz, will be held at the Faculty of Medicine of Saarland University, in Homburg, Germany, from 6–9 September, 2016.Protein kinase CK2 is a serine/threonine kinase, which is highly conserved in evolution. Knock-out experiments have shown that this enzyme is absolutely necessary for cell viability. The enzyme is highly expressed in rapidly proliferating cells, which goes along with an elevated enzyme activity. Protein kinase CK2 is involved in a broad range of signaling pathways, regulating proliferation, differentiation, apoptosis, or senescence. Recent advances towards the characterization of the three-dimensional structure of protein kinase CK2 and its subunits will undoubtedly yield important new insights into its regulation, and the functions of CK2. Moreover, with two inhibitors of the enzyme presently in clinical phase II trials, human protein kinase CK2 has appeared as an emerging target for cancer diseases.

Gonadotropin-Releasing Hormone Receptor Signaling and Functions

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889454792 Year: Pages: 170 DOI: 10.3389/978-2-88945-479-2 Language: English
Publisher: Frontiers Media SA
Subject: Medicine (General) --- Internal medicine
Added to DOAB on : 2019-01-23 14:53:42
License:

Loading...
Export citation

Choose an application

Abstract

This eBook provides a comprehensive overview of our current knowledge on Gonadotropin-releasing hormone receptor evolution, structure, signaling and functions. Apart from review articles, it comprises exciting new research, as well as hypotheses and perspectives, all of which are valuable in guiding our further research in this field.

Abiotic Stress: Molecular Genetics and Genomics

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193592 Year: Pages: 101 DOI: 10.3389/978-2-88919-359-2 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2015-11-16 15:44:59
License:

Loading...
Export citation

Choose an application

Abstract

Abiotic stresses are the major cause that limits productivity of crop plants worldwide. Plants have developed intricate machinery to respond and adapt over these adverse environmental conditions both at physiological and molecular levels. Due to increasing problems of abiotic stresses, plant biotechnologists and breeders need to employ new approaches to improve abiotic stress tolerance in crop plants. Although current research has divulged several key genes, gene regulatory networks and quantitative trait loci that mediate plant responses to various abiotic stresses, the comprehensive understanding of this complex trait is still not available. This e-book is focused on molecular genetics and genomics approaches to understand the plant response/adaptation to various abiotic stresses. It includes different types of articles (original research, method, opinion and review) that provide current insights into different aspects of plant responses and adaptation to abiotic stresses.

PI3K signalling

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194193 Year: Pages: 139 DOI: 10.3389/978-2-88919-419-3 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2015-12-10 11:59:06
License:

Loading...
Export citation

Choose an application

Abstract

The PI3Ks control many key functions in immune cells. PI3Ks phosphorylate PtdIns(4,5)P2 to yield PtdIns(3,4,5)P3. Initially, PI3K inhibitors such as Wortmannin, LY294002 and Rapamycin were used to establish a central role for Pi3K pathway in immune cells. Considerable progress in understanding the role of this pathway in cells of the immune system has been made in recent years, starting with analysis of various PI3K and Pten knockout mice and subsequently mTOR and Foxo knockout mice. Together, these experiments have revealed how PI3Ks control B cell and T cell development, T helper cell differentiation, regulatory T cell development and function, B cell and T cell trafficking, immunoglobulin class switching and much, much more. The PI3Kd inhibitor idelalisib has recently been approved for the treatment of B cell lymphoma. Clinical trials of other PI3K inhibitors in autoimmune and inflammatory diseases are also in progress. This is an opportune time to consider a Research Topic considering when what we have learned about the PI3K signalling module in lymphocyte biology and how this is making an impact on clinical immunology and haematology.

Arrest chemokines

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194308 Year: Pages: 108 DOI: 10.3389/978-2-88919-430-8 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Arrest chemokines are a small group of chemokines that promote leukocyte arrest from rolling by triggering rapid integrin activation. Arrest chemokines have been described for neutrophils, monocytes, eosinophils, naïve lymphocytes and effector memory T cells. Most arrest chemokines are immobilized on the endothelial surface by binding to heparin sulfate proteoglycans. Whether soluble chemokines can promote integrin activation and arrest is controversial (Alon-Gerszten). Many aspects of the signaling pathway from the GPCR chemokine receptor to integrin activation are the subject of active investigation. Leukocyte adhesion deficiency III is a human disease in which chemokine-triggered integrin activation is defective because of a mutation in the cytoskeletal protein kindlin-3. About 10 different such mutations have been described. The defects seen in patients with LAD-III elucidate the importance of rapid integrin activation for host defense in humans. We welcome reports that help clarifying this crucial first step in the process of leukocyte transendothelial migration.

Abiotic Stress Signaling in Plants: Functional Genomic Intervention

Authors: --- --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889198917 Year: Pages: 636 DOI: 10.3389/978-2-88919-891-7 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Botany
Added to DOAB on : 2016-01-19 14:05:46
License:

Loading...
Export citation

Choose an application

Abstract

Abiotic stresses such as high temperature, low-temperature, drought and salinity limit crop productivity worldwide. Understanding plant responses to these stresses is essential for rational engineering of crop plants. In Arabidopsis, the signal transduction pathways for abiotic stresses, light, several phytohormones and pathogenesis have been elucidated. A significant portion of plant genomes (Arabidopsis and rice were mostly studied) encodes for proteins involves in signaling such as receptor, sensors, kinases, phosphatases, transcription factors and transporters/channels. Despite decades of physiological and molecular effort, knowledge pertaining to how plants sense and transduce low and high temperature, low-water availability (drought), water-submergence, microgravity and salinity signals is still a major question for plant biologist. One major constraint hampering our understanding of these signal transduction processes in plants has been the lack or slow pace of application of molecular genomic and genetics knowledge in the form of gene function. In the post-genomic era, one of the major challenges is investigation and understanding of multiple genes and gene families regulating a particular physiological and developmental aspect of plant life cycle. One of the important physiological processes is regulation of stress response, which leads to adaptation or adjustment in response to adverse stimuli. With the holistic understanding of the signaling pathways involving not only one gene family but multiple genes or gene families, plant biologist can lay a foundation for designing and generating future crops, which can withstand the higher degree of environmental stresses (especially abiotic stresses, which are the major cause of crop loss throughout the world) without losing crop yield and productivity. Therefore, in this e-Book, we intend to incorporate the contribution from leading plant biologists to elucidate several aspects of stress signaling by functional genomics approaches.

Amyloid-beta clearance in Alzheimer's disease

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889194438 Year: Pages: 111 DOI: 10.3389/978-2-88919-443-8 Language: English
Publisher: Frontiers Media SA
Subject: Neurology --- Science (General)
Added to DOAB on : 2016-02-05 17:24:33
License:

Loading...
Export citation

Choose an application

Abstract

Strong evidence continues to accumulate indicating that amyloid-beta (Aß) is a central part of Alzheimer’s disease (AD) pathogenesis in spite of the negative evidence coming from failed clinical trials. Therefore, mechanisms of clearance of Aß are of great interest in understanding AD pathogenesis and the development of effective treatments. This topic focuses on the issues related to Aß clearance in AD. The topics covered include proteases that degrade Aß and their localization, regulation, and functions. This topic also covers issues related to clearance through uptake by glia and through low-density lipoprotein (LDL) receptor mediated mechanisms. Signal transduction related to AD pathology and clearance is also addressed. Finally, immunotherapy and other novel therapeutic approaches are discussed.

Regulation of immune system cell functions by protein kinase C

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889193264 Year: Pages: 129 DOI: 10.3389/978-2-88919-326-4 Language: English
Publisher: Frontiers Media SA
Subject: Allergy and Immunology --- Medicine (General)
Added to DOAB on : 2016-03-10 08:14:32
License:

Loading...
Export citation

Choose an application

Abstract

Members of the protein kinase C (PKC) family of Ser/Thr kinases are encoded by nine distinct but closely related genes, which give rise to more than 12 different protein isoforms via a mechanism of alternative RNA splicing. Most PKC proteins are ubiquitously expressed and participate in a plethora of functions in most cell types. A majority of PKC isoforms is also expressed in cells of the immune system in which they are involved in signal transduction downstream of a range of surface receptors, including the antigen receptors on T and B lymphocytes. PKC proteins are central to signal initiation and propagation, and to the regulation of processes leading to immune cell proliferation, differentiation, homing and survival. As a result, PKC proteins directly impact on the quality and quantity of immune responses and indirectly on the host resistance to pathogens and tendency to develop immune deficiencies and autoimmune diseases. A significant progress was made in recent years in understanding the regulation of PKC enzymes, their mechanism of action and their role in determining immunocyte behavior This volume reviews the most significant contributions made in the field of immune cell regulation by PKC enzymes. Several manuscripts are devoted to the role of distinct PKC isoforms in the regulation of selected immunocyte responses. Additional manuscripts review more general mechanisms of regulation of PKC enzymes, either by post-translational modifications, such as phosphorylation or controlled proteolysis, or by interaction with different binding proteins that may alter the conformation, activity and subcellular location of PKC. Both types of mechanisms can introduce conformational changes in the molecule, which may affect its ability to interact with cofactors, ATP, or substrates. This topic will be followed by a discussion on the positive and negative impact of individual PKC isoforms on cell cycle regulation. A second section of this volume concentrates on selected topics relevant to role of the novel PKC isoform, PKC-theta, in T lymphocyte function. PKC-theta plays important and some non-redundant roles in T cell activation and is a key isoform that recruits to the immunological synapse - the surface membrane area in T cells that comes in direct contact with antigen presenting cells. The immunological synapse is formed in T cells within seconds following the engagement of the TCR by a peptide-bound MHC molecule on the surface of antigen-presenting cells. It serves as a platform for receptors, adaptor proteins, and effector molecules, which assemble into multimolecular activation complexes required for signal transduction. The unique ability of PKC-theta to activate the NF-kB, AP-1 and NF-AT transcription factors is well established, and recent studies contributed essential information on the mechanisms involved in the recruitment of PKC-theta to the center of the immunological synapse and the nature of its substrates and the role of their phosphorylated forms in signal transduction. Additional review manuscripts will describe the unique behavior of PKC-theta in regulatory T cells and its role in the regulation of other cell populations, including those of the innate immune response. This volume brings together leading experts from different disciplines that review the most recent discoveries and offer new perspectives on the contributions of PKC isoforms to biochemical processes and signaling events in different immune cell populations and their impact on the overall host immune response.

Modeling and Analysis of Signal Transduction Networks

ISBN: 9783038421412 9783038421429 Year: Pages: 232 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Added to DOAB on : 2016-05-12 12:19:39
License:

Loading...
Export citation

Choose an application

Abstract

Biological pathways, such as signaling networks, are a key component of biological systems of each living cell. In fact, malfunctions of signaling pathways are linked to a number of diseases, and components of signaling pathways are used as potential drug targets. Elucidating the dynamic behavior of the components of pathways, and their interactions, is one of the key research areas of systems biology. Biological signaling networks are characterized by a large number of components and an even larger number of parameters describing the network. Furthermore, investigations of signaling networks are characterized by large uncertainties of the network as well as limited availability of data due to expensive and time-consuming experiments. As such, techniques derived from systems analysis, e.g., sensitivity analysis, experimental design, and parameter estimation, are important tools for elucidating the mechanisms involved in signaling networks. This Special Issue contains papers that investigate a variety of different signaling networks via established, as well as newly developed modeling and analysis techniques.

Neuropeptide GPCRs in Neuroendocrinology

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192670 Year: Pages: 825 DOI: 10.3389/978-2-88919-267-0 Language: English
Publisher: Frontiers Media SA
Subject: Internal medicine --- Medicine (General) --- Neurology --- Science (General)
Added to DOAB on : 2015-12-03 13:02:24
License:

Loading...
Export citation

Choose an application

Abstract

The human genome encompasses ~ 860 G protein-coupled receptors (GPCRs) including 374 non-chemosensory GPCRs. Half of these latter GPCRs recognize (neuro)peptides as natural ligands. GPCRs thus play a pivotal role in neuroendocrine communication. In particular, GPCRs are involved in the neuroendocrine control of feeding behavior, reproduction, growth, hydromineral homeostasis and stress response. GPCRs are also major drug targets and hence possess a strong potential for the development of innovative pharmaceuticals. The aim of this Research Topic was to assemble a series of review articles and original research papers on neuropeptide GPCRs and their ligands that would illustrate the different facets of the studies currently conducted in this domain.

Listing 1 - 10 of 14 << page
of 2
>>
Sort by
Narrow your search