Search results: Found 5

Listing 1 - 5 of 5
Sort by
Selected Papers from the 15th Estuarine and Coastal Modeling Conference

Author:
ISBN: 9783039212699 / 9783039212705 Year: Pages: 432 DOI: 10.3390/books978-3-03921-270-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Geography
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

The 15th Estuarine and Coastal Modeling Conference provides a venue for commercial, academic, and government scientists and engineers from around the world to present and discuss the latest results and techniques in applied estuarine and coastal modeling. Prospective authors are invited to submit papers on a wide range of topic areas, including:• Pollutant Transport and Water Quality Prediction• Coastal Response to Climate Change• Modeling Techniques and Sensitivity Studies• Model Assessment• Modeling Specific Estuarine and Coastal Systems• Visualization and Analysis• Wave and Sediment Transport Modeling• Modeling of Chemicals and Floatables• Oil Spill Transport and Fate Modeling• Inverse Methods• Circulation Modeling• Facility Siting and CSO Studies• Data Assimilation• Nowcast/Forecast Modeling Systems• Modeling Systems with Strong Buoyancy Forcing• Modeling of Coupled Systems• Risk Analysis (Nuclear Reactors, Flood Forecasting)

Keywords

British Columbia --- environmental assessment --- marine construction --- circulation --- numerical model --- sediment model --- tidal current --- wind-driven current --- stratification --- initial dilution zone --- property-carrying particle model --- coupled models --- ecosystem simulation --- biophysical modeling --- Sandusky Bay --- Great Lakes --- tides --- tidal datums --- VDatum --- spatially varying uncertainty (SVU) --- north-east Gulf of Mexico --- Brown Passage --- Chatham Sound --- internal tides --- circulation --- numerical model --- stratification --- barotropic --- baroclinic --- Hood Canal --- floating bridge --- Salish Sea --- hydrodynamics --- Finite-Volume Community Ocean Model (FVCOM) --- circulation --- anthropogenic impact --- zone of influence --- Salish Sea model --- ice modeling --- operational forecast --- FVCOM --- CICE --- hydrodynamic modeling --- Great Lakes --- hydrodynamic numerical model --- H3D --- agriculture --- salt wedge --- climate change --- sea level rise --- river discharge --- channel deepening --- tidal constituent database --- ADvanced CIRCulation model (ADCIRC) --- Eastern North Pacific Ocean (ENPAC) --- coastal ocean modeling --- Gulf of Mexico --- operational nowcast and forecast system --- Finite Volume Community Ocean Model --- water level --- temperature --- salinity --- water quality --- model calibration --- estuary --- eutrophication --- CE-QUAL-W2 --- phytoplankton --- algal growth kinetics --- wave energy --- wind forcing --- large-wave hindcast --- multi-level nested-grid modeling --- CFSR --- NARR --- WaveWatch III --- SWAN --- hydrodynamics --- feasibility assessments --- nearshore restoration --- FVCOM --- Puget Sound --- Salish Sea --- numerical model --- sediment transport --- marine --- short-lived radioisotopes --- wave hindcast --- breakwater --- harbor --- estuary --- SWAN --- MIKE21SW --- unstructured grid --- storm surge --- coastal storm --- flooding --- compound events --- estuarine modeling --- lateral circulation --- tidal currents --- momentum balance --- coastal and estuarine modeling --- ADCIRC --- water level time series --- VDatum --- tidal datums --- statistical interpolation --- spatially varying uncertainty --- non-tidal zones --- marine grid population --- Texas --- western Louisiana --- Gulf of Mexico --- ocean modeling --- cloud computing --- data analysis --- geospatial data visualization

Satellite Altimetry for Earth Sciences

Authors: --- --- ---
ISBN: 9783038976806 / 9783038976813 Year: Pages: 484 DOI: 10.3390/books978-3-03897-681-3 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General) --- Geophysics and Geomagnetism
Added to DOAB on : 2019-08-28 11:21:27
License:

Loading...
Export citation

Choose an application

Abstract

Satellite altimetry is a radar technique for measuring the topography of the Earth’s surface. It was initially designed for measuring the ocean’s topography, with reference to an ellipsoid, and for the determination of the marine geoid. Satellite altimetry has provided extremely valuable information on ocean science (e.g., circulation surface geostrophic currents, eddy structures, wave heights, and the propagation of oceanic Kelvin and Rossby waves). With more than 25 years of observations, it is also becoming vital to climate research, providing accurate measurements of sea level variations from regional to global scales. Altimetry has also demonstrated a strong potential for geophysical, cryospheric, and hydrological research and is now commonly used for the monitoring of Arctic and Antarctic ice sheet topography and of terrestrial surface water levels. This book aims to present reviews and recent advances of general interest in the use of radar altimetry in Earth sciences. Manuscripts are related to any aspect of radar altimetry technique or geophysical applications. We also encourage manuscripts resulting from the application of new altimetric technology (SAR, SARin, and Ka band) and improvements expected from missions to be launched in the near future (i.e., SWOT).

Keywords

satellite altimetry --- Envisat --- SARAL --- unsupervised classification --- K-medoids --- Greenland Sea --- Fram Strait --- upper layer thickness --- satellite altimeter --- two-layer ocean model --- South China Sea --- coastal altimetry --- sea surface height --- Jason-2 --- waveform retracking --- satellite altimetry --- inland water --- CryosSat-2 SAR --- Mekong Basin --- water level time series --- classification --- stack data --- altimetry --- Ka-band --- data processing --- calibration --- validation --- altimetry --- SAR --- calibration --- validation --- sea surface height --- coastal altimetry --- validation --- tide gauge --- altimetry --- Ka-band --- oceanography --- hydrology --- ice --- geodesy --- Jason-2 --- Hong Kong coast --- retracking --- X-TRACK --- ALES --- PISTACH --- radar altimetry --- coastal altimetry --- sea surface height --- topography of the intertidal zone --- ERS-2 --- ENVISAT --- SARAL --- CryoSat-2 --- altimetry --- water level --- discharge --- Sentinel-3 --- satellite altimetry --- microwave radiometer --- wet tropospheric correction --- wet path delay --- sensor calibration --- HY-2A --- waveform retracking --- range precision --- marine gravity --- radar altimetry --- waveform --- dielectric permittivity --- soil moisture --- satellite altimetry --- SWOT --- western Mediterranean Sea --- fine scale --- SWOT simulator --- ROMS model --- filtering --- storm surge --- satellite altimetry --- calibration --- numerical modelling --- FVCOM --- ocean tides --- coastal altimetry --- ALES retracker --- ocean geostrophy --- water volume transport --- satellite geodesy --- space gravity --- altimetry --- Argo --- Southern Ocean --- ACC --- lake level --- lake volume --- evaporation --- streamflow --- Gravity Recovery and Climate Experiment (GRACE) --- altimetry --- Landsat --- Aral Sea --- altimetry --- water levels --- validation --- Inner Niger Delta --- altimetry --- orbit decay --- drifting orbit --- geodetic orbit --- leads --- satellite altimetry --- CryoSat-2 --- classification --- peakiness --- polar ocean

Urban Deformation Monitoring using Persistent Scatterer Interferometry and SAR tomography

Authors: --- ---
ISBN: 9783039211265 / 9783039211272 Year: Pages: 308 DOI: 10.3390/books978-3-03921-127-2 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

This book focuses on remote sensing for urban deformation monitoring. In particular, it highlights how deformation monitoring in urban areas can be carried out using Persistent Scatterer Interferometry (PSI) and Synthetic Aperture Radar (SAR) Tomography (TomoSAR). Several contributions show the capabilities of Interferometric SAR (InSAR) and PSI techniques for urban deformation monitoring. Some of them show the advantages of TomoSAR in un-mixing multiple scatterers for urban mapping and monitoring. This book is dedicated to the technical and scientific community interested in urban applications. It is useful for choosing the appropriate technique and gaining an assessment of the expected performance. The book will also be useful to researchers, as it provides information on the state-of-the-art and new trends in this field

Keywords

SBAS-InSAR --- surface subsidence --- Sentinel-1A --- Wuhan --- engineering construction --- carbonate karstification --- water level changes --- reclamation settlements --- Lingang New City --- time series InSAR analysis --- terraSAR-X --- ENVISAT ASAR --- ALOS PALSAR --- time series analysis --- InSAR --- PS --- landslide --- subsidence --- land reclamation --- urbanization --- risk --- Istanbul --- Turkey --- Persistent Scatterer Interferometry (PSI) --- Sentinel-1 --- uplift --- expansive soils --- dewatering --- London --- synthetic aperture radar (SAR) --- SAR tomography --- deformation monitoring --- persistent scatterer interferometry (PSI) --- urban deformation monitoring --- radar interferometry --- displacement mapping --- spaceborne SAR --- differential interferometry --- differential tomography --- ERS-1/-2 --- PALSAR --- PALSAR-2 --- InSAR --- land subsidence --- reclaimed land --- Urayasu City --- SAR interferometry --- displacement monitoring --- Sentinel-1 --- permanent scatterers --- thermal dilation --- health monitoring --- SAR --- Sentinel-1 --- differential SAR interferometry --- atmospheric component --- modelling --- deformation time series --- validation --- multi-look SAR tomography --- multiple PS detection --- Capon estimation --- Generalized Likelihood Ratio Test --- synthetic aperture radar --- persistent scatterers --- differential interferometry --- tomography --- radar detection --- generalized likelihood ratio test --- sparse signals --- pursuit monostatic --- PS-InSAR --- urban monitoring --- skyscrapers --- urban subsidence --- Copernicus Sentinel-1 --- Persistent Scatterer Interferometry --- SNAP-StaMPS --- Rome --- synthetic aperture radar --- tomography --- polarimetry --- radar detection --- generalized likelihood ratio test --- sparse signals --- geological and geomorphological mapping --- Late-Quaternary deposits --- differential compaction --- multi-temporal DInSAR --- Venetian-Friulian Plain --- subsidence monitoring --- persistent scatterer interferometry --- asymmetric subsidence --- groundwater level variation --- Sepulveda Transit Corridor --- Los Angeles --- synthetic aperture radar --- persistent scatterers --- tomography --- differential interferometry --- polarimetry --- radar detection --- urban areas --- deformation

Flood Forecasting Using Machine Learning Methods

Authors: --- ---
ISBN: 9783038975489 Year: Pages: 376 DOI: 10.3390/books978-3-03897-549-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-03-08 11:42:05
License:

Loading...
Export citation

Choose an application

Abstract

This book is a printed edition of the Special Issue Flood Forecasting Using Machine Learning Methods that was published in Water

Keywords

data scarce basins --- runoff series --- data forward prediction --- ensemble empirical mode decomposition (EEMD) --- stopping criteria --- method of tracking energy differences (MTED) --- deep learning --- convolutional neural networks --- superpixel --- urban water bodies --- high-resolution remote-sensing images --- monthly streamflow forecasting --- artificial neural network --- ensemble technique --- phase space reconstruction --- empirical wavelet transform --- hybrid neural network --- flood forecasting --- self-organizing map --- bat algorithm --- particle swarm optimization --- flood routing --- Muskingum model --- machine learning methods --- St. Venant equations --- rating curve method --- nonlinear Muskingum model --- hydrograph predictions --- flood routing --- Muskingum model --- hydrologic models --- improved bat algorithm --- Wilson flood --- Karahan flood --- flood susceptibility modeling --- ANFIS --- cultural algorithm --- bees algorithm --- invasive weed optimization --- Haraz watershed --- ANN-based models --- flood inundation map --- self-organizing map (SOM) --- recurrent nonlinear autoregressive with exogenous inputs (RNARX) --- ensemble technique --- artificial neural networks --- uncertainty --- streamflow predictions --- sensitivity --- flood forecasting --- extreme learning machine (ELM) --- backtracking search optimization algorithm (BSA) --- the upper Yangtze River --- deep learning --- LSTM network --- water level forecast --- the Three Gorges Dam --- Dongting Lake --- Muskingum model --- wolf pack algorithm --- parameters --- optimization --- flood routing --- flash-flood --- precipitation-runoff --- forecasting --- lag analysis --- random forest --- machine learning --- flood prediction --- flood forecasting --- hydrologic model --- rainfall–runoff, hybrid & --- ensemble machine learning --- artificial neural network --- support vector machine --- natural hazards & --- disasters --- adaptive neuro-fuzzy inference system (ANFIS) --- decision tree --- survey --- classification and regression trees (CART), data science --- big data --- artificial intelligence --- soft computing --- extreme event management --- time series prediction --- LSTM --- rainfall-runoff --- flood events --- flood forecasting --- data assimilation --- particle filter algorithm --- micro-model --- Lower Yellow River --- ANN --- hydrometeorology --- flood forecasting --- real-time --- postprocessing --- machine learning --- early flood warning systems --- hydroinformatics --- database --- flood forecast --- Google Maps

Entropy Applications in Environmental and Water Engineering

Authors: --- ---
ISBN: 9783038972228 Year: Pages: 512 DOI: 10.3390/books978-3-03897-223-5 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Environmental Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Entropy theory has wide applications to a range of problems in the fields of environmental and water engineering, including river hydraulic geometry, fluvial hydraulics, water monitoring network design, river flow forecasting, floods and droughts, river network analysis, infiltration, soil moisture, sediment transport, surface water and groundwater quality modeling, ecosystems modeling, water distribution networks, environmental and water resources management, and parameter estimation. Such applications have used several different entropy formulations, such as Shannon, Tsallis, Reacutenyi Burg, Kolmogorov, Kapur, configurational, and relative entropies, which can be derived in time, space, or frequency domains. More recently, entropy-based concepts have been coupled with other theories, including copula and wavelets, to study various issues associated with environmental and water resources systems. Recent studies indicate the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering, including establishing and explaining physical connections between theory and reality. The objective of this Special Issue is to provide a platform for compiling important recent and current research on the applications of entropy theory in environmental and water engineering. The contributions to this Special Issue have addressed many aspects associated with entropy theory applications and have shown the enormous scope and potential of entropy theory in advancing research in the fields of environmental and water engineering.

Keywords

complexity --- streamflow --- water level --- composite multiscale sample entropy --- trend --- Poyang Lake basin --- four-parameter exponential gamma distribution --- principle of maximum entropy --- precipitation frequency analysis --- methods of moments --- maximum likelihood estimation --- flood frequency analysis --- generalized gamma (GG) distribution --- principle of maximum entropy (POME) --- entropy theory --- principle of maximum entropy (POME) --- GB2 distribution --- flood frequency analysis --- non-point source pollution --- ANN --- entropy weighting method --- data-scarce --- multi-events --- spatio-temporal variability --- soil water content --- entropy --- arid region --- joint entropy --- NDVI --- temperature --- precipitation --- groundwater depth --- Hei River basin --- turbulent flow --- canopy flow --- randomness --- coherent structures --- Shannon entropy --- Kolmogorov complexity --- entropy --- information transfer --- optimization --- radar --- rainfall network --- water resource carrying capacity --- forewarning model --- entropy of information --- fuzzy analytic hierarchy process --- projection pursuit --- accelerating genetic algorithm --- entropy production --- conditional entropy production --- stochastic processes --- scaling --- climacogram --- turbulence --- water resources vulnerability --- connection entropy --- changing environment --- set pair analysis --- Anhui Province --- cross-entropy minimization --- land suitability evaluation --- spatial optimization --- monthly streamflow forecasting --- Burg entropy --- configurational entropy --- entropy spectral analysis time series analysis --- entropy --- water monitoring --- network design --- hydrometric network --- information theory --- entropy applications --- hydrological risk analysis --- maximum entropy-copula method --- uncertainty --- Loess Plateau --- entropy --- water engineering --- Tsallis entropy --- principle of maximum entropy --- Lagrangian function --- probability distribution function --- flux concentration relation --- uncertainty --- information --- informational entropy --- variation of information --- continuous probability distribution functions --- confidence intervals --- precipitation --- variability --- marginal entropy --- crop yield --- Hexi corridor --- flow duration curve --- Shannon entropy --- entropy parameter --- modeling --- spatial and dynamics characteristic --- hydrology --- tropical rainfall --- statistical scaling --- Tsallis entropy --- multiplicative cascades --- Beta-Lognormal model --- rainfall forecast --- cross entropy --- ant colony fuzzy clustering --- combined forecast --- information entropy --- mutual information --- kernel density estimation --- ENSO --- nonlinear relation --- scaling laws --- power laws --- water distribution networks --- robustness --- flow entropy --- entropy theory --- frequency analysis --- hydrometeorological extremes --- Bayesian technique --- rainfall --- entropy ensemble filter --- ensemble model simulation criterion --- EEF method --- bootstrap aggregating --- bagging --- bootstrap neural networks --- El Niño --- ENSO --- neural network forecast --- sea surface temperature --- tropical Pacific --- entropy --- cross elasticity --- mean annual runoff --- water resources --- resilience --- quaternary catchment --- complement --- substitute --- entropy theory --- complex systems --- hydraulics --- hydrology --- water engineering --- environmental engineering

Listing 1 - 5 of 5
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (5)


License

CC by-nc-nd (5)


Language

eng (5)


Year
From To Submit

2019 (5)