Search results: Found 13

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Alloy Steels

Author:
ISBN: 9783038428831 9783038428848 Year: Pages: X, 320 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Mining and Metallurgy --- General and Civil Engineering
Added to DOAB on : 2018-05-04 14:03:05
License:

Loading...
Export citation

Choose an application

Abstract

Alloy steels play a pivotal role in modern society. Their continued development improves the human condition for everyone on earth. Their broad use has resulted in a wide variety of continuing challenges to address economic, manufacturing, and industrial issues. This book contains twenty-three papers covering a wide cross-section of alloy steels and technical problems. Readers interested in solving current manufacturing and application problems will find this issue helpful. The papers contained within cover a wide range of topics by a broad set of authors from across the globe. There are papers covering structure–property relations on various alloys. Other papers discuss the proper processing of alloy steels through the welding, electroslag remelting, and rolling processes. A significant number of the papers cover optimizing the heat treatment of traditional alloys as well as new alloys. There are papers that concentrate on providing real-world performance data on alloy steels, an important but under-studied topic. Of particular interest is a review on the welding of austenitic and duplex stainless steels that gives neophytes and experienced researchers an excellent introduction to the state-of-the-art. This collection of work should be valuable to anyone interested in alloy steels.

Keywords

Steels --- Alloy --- Welding --- Rolling --- Corrosion --- Stainless Steel --- Casting

Advances in Welding Metal Alloys, Dissimilar Metals and Additively Manufactured Parts

Author:
ISBN: 9783038973720 9783038973737 Year: Pages: 222 DOI: 10.3390/books978-3-03897-373-7 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: General and Civil Engineering --- Materials --- Mining and Metallurgy
Added to DOAB on : 2018-11-29 09:42:07
License:

Loading...
Export citation

Choose an application

Abstract

Welding technology has been taken for granted as a mature and established technology for too long. However, many new welding technologies have been included among the alternatives to joining materials. They come both from the areas of fusion and solid-state welding. Moreover, a recent approach has offered one more alternative. This is hybrid welding, which couples two or more welding sources in a cooperative or synergic welding mode. Welding engineers and scientists have the task to understand which is the best technology for a specific application. This task requires deep knowledge and great intelligence to tackle the challenge of producing light and smart structures and products.In this book, a glimpse of recent developments in metal alloy welding is presented. Laser, friction, and arc welding are the main protagonists of the papers that are included. Processes, materials, and tools are described and studied along with investigation procedures and numerical simulations.This book will make you aware of most of the subjects discussed in the scientific community and new potentialities of welding as a leading technology in manufacturing.I hope you enjoy reading this Special Issue, "Advances in Welding Metal Alloys, Dissimilar Metals and Additively Manufactured Parts".

Dissimilar Metal Welding

Authors: ---
ISBN: 9783039219544 / 9783039219551 Year: Pages: 288 DOI: 10.3390/books978-3-03921-955-1 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2020-01-07 09:08:26
License:

Loading...
Export citation

Choose an application

Abstract

The combination of distinct materials is a key issue in modern industry, whereas the driving concept is to design parts with the right material in the right place. In this framework, a great deal of attention is directed towards dissimilar welding and joining technologies. In the automotive sector, for instance, the concept of “tailored blanks”, introduced in the last decade, has further highlighted the necessity to weld dissimilar materials. As far as the aeronautic field is concerned, most structures are built combining very different materials and alloys, in order to match lightweight and structural performance requirements. In this framework, the application of fusion welding techniques, namely, tungsten inert gas or laser welding, is quite challenging due to the difference in physical properties, in particular the melting point, between adjoining materials. On the other hand, solid-state welding methods, such as the friction stir welding as well as linear friction welding processes, have already proved to be capable of manufacturing sound Al-Cu, Al-Ti, Al-SS, and Al-Mg joints, to cite but a few. Recently, promising results have also been obtained using hybrid methods. Considering the novelty of the topic, many relevant issues are still open, and many research groups are continuously publishing valuable results. The aim of this book is to finalize the latest contributions on this topic.

Keywords

dissimilar joints --- friction stir welding --- microstructure --- mechanical properties --- local strength mismatch --- dissimilar metal welded joint --- fracture resistance --- crack growth path --- optimal design --- laser beam welding --- spatial beam oscillation --- dissimilar metals --- aluminum --- copper --- friction stir welding --- aluminum --- copper --- cross-section adjustment --- mechanical properties --- electrical properties --- dissimilar weld --- ageing --- tensile properties --- hardness --- failure mode --- dissimilar metal welding --- Inconel 625 --- AISI 316L --- microstructure --- filler metals --- friction stir spot welding --- friction stir spot brazing --- joining area --- fracture load --- Al/steel dissimilar materials --- friction stir welding --- interface --- intermetallic compounds --- dual-beam laser welding --- steel/Al joint --- side-by-side configuration --- tensile resistance --- EBSD phase mapping --- pulsed Nd:YAG laser beam welding --- interfacial crack initiation --- dissimilar Ti6Al4V/AA6060 lap joint --- phase potential --- laser welding --- pulsed Nd:YAG laser --- DP1000 steel --- 1050 aluminum alloy --- dissimilar materials welding --- steel/aluminum joint --- Ag-Cu-Zn --- Rare earth --- aging treatment --- microstructure --- mechanical properties --- aluminum --- dissimilar --- friction stir welding --- FSW --- hardness --- microstructure --- tensile --- magnetic pulse welding --- dissimilar metal welding --- solid state welding --- welding window --- cloud of particles --- jet --- surface activation --- welding-brazing --- arc assisted laser method --- aluminum-steel butt joint --- mechanical properties --- DeltaSpot welding --- spooling process tape --- aluminum alloy --- dissimilar metal welding --- lobe curve --- electromagnetic pulse welding --- tubular joints --- internal supports --- n/a

Solid State Lasers Materials, Technologies and Applications

Author:
ISBN: 9783038428411 9783038428428 Year: Pages: VI, 170 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Optics and Lights
Added to DOAB on : 2018-04-24 12:46:59
License:

Loading...
Export citation

Choose an application

Abstract

Solid-state lasers offer unique qualities in terms of flexibility, robustness, efficiency, and wavelength diversity. For these reasons, they are nowadays irreplaceable tools in many scientific and industrial applications. The engineering of new materials, the advances in photonics technologies, and the increasing demand for speed, cleanliness, and high-precision in industrial processes contribute to propel the research in this exciting and quickly developing field. Despite the impossibility to cover all the aspects of this very diversified topic in a single publication, this Special Issue "Solid State Lasers Materials, Technologies and Applications" offers an interesting insight into some of the latest developments in this field. Comprehensive review papers describe the state of the art of highly doped fiber lasers and amplifiers, deep-ultraviolet generation, and laser welding under vacuum with high-power lasers. Research articles present the latest results on picosecond pulse amplification, mid-infrared laser sources, parametric down-conversion modules, and coherent beam combining. Heavy-industry applications, such as laser welding and laser cladding, are also addressed.

Friction Stir Welding and Processing in Alloy Manufacturing

Author:
ISBN: 9783039212071 / 9783039212088 Year: Pages: 142 DOI: 10.3390/books978-3-03921-208-8 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Chemistry (General) --- Analytical Chemistry
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

Friction stir welding (FSW) is considered to be the most significant development in metal joining in decades and, in addition, is a ""green"" technology due to its energy efficiency, environmental friendliness, and versatility. This process offers a number of advantages over conventional joining processes. Furthermore, because welding occurs via the deformation of material at temperatures below the melting temperature, many problems commonly associated with joining of dissimilar alloys can be avoided, and thus, high-quality welds are produced. Due to this fact, FSW has been widely used in different industrial applications where metallurgical characteristics should be retained, such as in the aeronautic, naval, and automotive industries.

Thermo-Mechanical Behaviour of Structural Lightweight Alloys

Author:
ISBN: 9783039213870 / 9783039213887 Year: Pages: 128 DOI: 10.3390/books978-3-03921-388-7 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

The need to reduce the ecological footprint of water/land/air vehicles in this era of climate change requires pushing the limits regarding the development of lightweight structures and materials. This requires a thorough understanding of their thermomechanical behavior at several stages of the production chain. Moreover, during service, the response of lightweight alloys under the simultaneous influence of mechanical loads and temperature can determine the lifetime and performance of a multitude of structural components. The present Special Issue, comprising eight original research articles, is dedicated to disseminating current efforts around the globe aimed at advancing understanding of the thermomechanical behavior of structural lightweight alloys under processing or service conditions.

3D Printing of Metals

Author:
ISBN: 9783039213412 / 9783039213429 Year: Pages: 138 DOI: 10.3390/books978-3-03921-342-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

3D printing is rapidly emerging as a key manufacturing technique that is capable of serving a wide spectrum of applications, ranging from engineering to biomedical sectors. Its ability to form both simple and intricate shapes through computer-controlled graphics enables it to create a niche in the manufacturing sector. Key challenges remain, and a great deal of research is required to develop 3D printing technology for all classes of materials including polymers, metals, ceramics, and composites. In view of the growing importance of 3D manufacturing worldwide, this Special Issue aims to seek original articles to further assist in the development of this promising technology from both scientific and technological perspectives. Targeted reviews, including mini-reviews, are also welcome, as they play a crucial role in educating students and young researchers.

Ironmaking and Steelmaking

Authors: ---
ISBN: 9783039213290 / 9783039213306 Year: Pages: 464 DOI: 10.3390/books978-3-03921-330-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Physics (General)
Added to DOAB on : 2019-12-09 16:10:12
License:

Loading...
Export citation

Choose an application

Abstract

Steel is a critical material in our societies and will remain an important one for a long time into the future. In the last two decades, the world steel industry has gone through drastic changes and this is predicted to continue in the future. The Asian countries (e.g. China, India) have been dominant in the production of steel creating global over-capacity, while the steel industry in the developed countries have made tremendous efforts to reinforce its global leadership in process technology and product development, and remain sustainable and competitive. The global steel industry is also facing various grand challenges in strict environmental regulation, new energy and materials sources, and ever-increasing customer requirements for high quality steel products, which has been addressed accordingly by the global iron and steel community. This Special Issue, “Ironmaking and Steelmaking”, released by the journal Metals, published 33 high quality articles from the international iron and steel community, covering the state-of-the-art of the ironmaking and steelmaking processes. This includes fundamental understanding, experimental investigation, pilot plant trials, industrial applications and big data utilization in the improvement and optimization of existing processes, and research and development in transformative technologies. It is hoped that the creation of this special issue as a scientific platform will help drive the iron and steel community to build a sustainable steel industry.

Keywords

ironmaking --- microwaves --- carbothermal reduction --- iron oxides --- emission spectrum --- ore-carbon briquette --- CO–CO2 atmosphere --- simulation --- re-oxidation --- reduction --- electroslag cladding --- high speed steel --- ductile cast iron --- composite roll --- bonding interface --- high-phosphorus iron ore --- fluorapatite --- carbothermal reduction --- vaporization dephosphorization --- iron ore pellets --- compressive strength (CS) --- prediction model --- artificial neural network --- principal component analysis --- crystallization behaviors --- crystallization rate --- anosovite crystals --- silicate crystals --- titanium slag --- blast furnace --- copper stave --- hydrogen attack --- slag crust --- heat-affected zone --- high heat input welding --- Ca deoxidation --- inclusion control --- intragranular acicular ferrite --- concentrate --- iron ore --- agglomerate --- structure --- phase analysis --- Mg deoxidation --- inclusions --- Al addition --- high-heat-input welding --- heat-affected zone --- toughness --- shot peening --- Barkhausen noise --- crystallite size --- carbon composite pellet --- direct reduction --- shrinkage --- kinetics --- rotary hearth furnace --- hydrogen plasma --- smelting reduction --- HPSR --- iron oxide --- plasma arc --- ionization degree --- sulfur distribution ratio --- liquid area --- carbon-saturated iron --- phosphate capacity --- sulfide capacity --- phosphorus distribution ratio --- sulfur distribution ratio --- evaluation of coupling relationship --- secondary refining process, CaO–based slags --- iron sulfate --- TG analysis --- thermal treatment --- iron oxide --- kinetics --- activation energy --- high-aluminum iron ore --- synergistic reduction --- high-manganese iron ore --- hercynite --- fayalite --- flow velocity --- casting speed --- gas flow rate --- flow pattern --- continuous casting --- Cr recovery --- self-reduction briquette --- reaction mechanism --- mold flux --- low fluorine --- internal crack --- surface roughness --- slag film --- vanadium titano-magnetite --- gas-based reduction --- carbon monoxide --- hydrogen --- and nitrogen --- kinetics --- pellet size --- liquid steel --- non-contact measurement --- oxides --- steel-making --- blast furnace --- solid flow --- cold experiment --- direct element method --- Wilcox–Swailes coefficient --- viscosity --- BaO --- CaO/Al2O3 ratio --- modified NPL model --- ultrafine particles exposure --- steelmaking factory --- chemical composition --- devolatilization --- torrefied biomass --- bio-coal --- volatile matter --- iso-conversional method --- Al-TRIP steel --- surface depression --- cracks --- non-metallic inclusion --- mold flux --- reactivity --- hot metal pre-treatment --- desiliconisation --- dephosphorisation --- solid and gaseous oxygen --- fork --- flat steel --- inclusions --- 33MnCrTiB --- slag --- carbon dioxide --- injection --- blast furnace --- converter --- combustion --- oxygen steelmaking --- refining kinetics --- slag formation --- penetration theory --- oxygen blast furnace --- COREX --- static process model --- integrated steel plant --- material flow --- energy consumption --- CO2 emissions --- oil-pipeline steel --- Ca-treatment --- non-metallic inclusions --- electrolytic extraction --- corrosion --- n/a

Glassy Materials Based Microdevices

Authors: ---
ISBN: 9783038976189 Year: Pages: 284 DOI: 10.3390/books978-3-03897-619-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Electrical and Nuclear Engineering --- General and Civil Engineering --- Technology (General)
Added to DOAB on : 2019-03-21 15:50:41
License:

Loading...
Export citation

Choose an application

Abstract

Microtechnology has changed our world since the last century, when silicon microelectronics revolutionized sensor, control and communication areas, with applications extending from domotics to automotive, and from security to biomedicine. The present century, however, is also seeing an accelerating pace of innovation in glassy materials; as an example, glass-ceramics, which successfully combine the properties of an amorphous matrix with those of micro- or nano-crystals, offer a very high flexibility of design to chemists, physicists and engineers, who can conceive and implement advanced microdevices. In a very similar way, the synthesis of glassy polymers in a very wide range of chemical structures offers unprecedented potential of applications. The contemporary availability of microfabrication technologies, such as direct laser writing or 3D printing, which add to the most common processes (deposition, lithography and etching), facilitates the development of novel or advanced microdevices based on glassy materials. Biochemical and biomedical sensors, especially with the lab-on-a-chip target, are one of the most evident proofs of the success of this material platform. Other applications have also emerged in environment, food, and chemical industries. The present Special Issue of Micromachines aims at reviewing the current state-of-the-art and presenting perspectives of further development. Contributions related to the technologies, glassy materials, design and fabrication processes, characterization, and, eventually, applications are welcome.

Keywords

micro-crack propagation --- severing force --- quartz glass --- micro-grinding --- microfluidics --- single-cell analysis --- polymeric microfluidic flow cytometry --- single-cell protein quantification --- glass molding process --- groove --- roughness --- filling ratio --- label-free sensor --- optofluidic microbubble resonator --- detection of small molecules --- chalcogenide glass --- infrared optics --- precision glass molding --- aspherical lens --- freeform optics --- micro/nano patterning --- 2D colloidal crystal --- soft colloidal lithography --- strain microsensor --- vectorial strain gauge --- compound glass --- microsphere --- resonator --- lasing --- sensing --- microresonator --- whispering gallery mode --- long period grating --- fiber coupling --- distributed sensing --- chemical/biological sensing --- direct metal forming --- glassy carbon micromold --- enhanced boiling heat transfer --- metallic microstructure --- microspheres --- microdevices --- glass --- polymers --- solar energy --- nuclear fusion --- thermal insulation --- sol-gel --- Ag nanoaggregates --- Yb3+ ions --- down-shifting --- photonic microdevices --- alkali cells --- MEMS vapor cells --- optical cells --- atomic spectroscopy --- microtechnology --- microfabrication --- MEMS --- microfluidic devices --- laser materials processing --- ultrafast laser micromachining --- ultrafast laser welding --- enclosed microstructures --- glass --- porous media --- fluid displacement --- spray pyrolysis technique --- dielectric materials --- luminescent materials --- photovoltaics --- frequency conversion --- device simulations --- europium --- luminescence --- hybrid materials --- microdevices --- light --- photon --- communications --- waveguides --- fibers --- biosensors --- microstructured optical fibers --- whispering gallery modes --- light localization --- optofluidics --- lab-on-a-chip --- femtosecond laser --- laser micromachining --- diffusion

Microstructure and Mechanical Properties of Structural Metals and Alloys

Author:
ISBN: 9783038975052 / 9783038975069 Year: Pages: 272 DOI: 10.3390/books978-3-03897-506-9 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- Chemical Engineering
Added to DOAB on : 2019-06-26 08:44:06
License:

Loading...
Export citation

Choose an application

Abstract

The papers collected in this special issue clearly reflect the modern research trends in materials science. These fields of specific attention are high-Mn TWIP steels, high-Cr heat resistant steels, aluminum alloys, ultrafine grained materials including those developed by severe plastic deformation, and high-entropy alloys. The major portion of the collected papers is focused on the mechanisms of microstructure evolution and the mechanical properties of metallic materials subjected to various thermo-mechanical, deformation or heat treatments. Another large portion of the studies is aimed on the elaboration of alloying design of advanced steels and alloys. The changes in phase content, transformation and particle precipitation and their effect on the properties are also broadly presented in this collection, including the microstructure/property changes caused by irradiation.

Keywords

Mg–Sm–Zn–Zr --- dynamic precipitation --- microstructure --- mechanical property --- bimodal ferrite steel --- ultrafine-grained microstructure --- mechanical properties --- corrosion resistance --- abnormal grain growth --- grain boundary engineering --- electron backscattered diffraction --- growth rate --- Al metal matrix composites --- microstructure --- mechanical properties --- strengthening mechanism --- hot compression --- dynamic recovery --- dynamic recrystallization --- texture --- aluminum alloys --- Al-Fe-Si-Zr system --- microstructure --- hardness --- electrical conductivity --- metal–matrix composite --- high-pressure torsion --- microstructure evolution --- microhardness --- shape memory alloy --- columnar grain --- Cu-Al-Mn --- elastocaloric effect --- strain rate --- measuring temperature --- creep --- lead-free solder --- Sb solder --- Sn-8.0Sb-3.0Ag --- solder microstructure --- martensitic steels --- creep --- precipitation --- electron microscopy --- high-Mn TWIP steel --- cold rolling --- annealing --- recovery --- recrystallization --- strengthening --- austenitic 304 stainless steels --- sub-merged arc welding --- post-weld heat treatment --- aluminum alloys --- aging --- precipitation --- electrical resistivity --- mechanical properties --- ferritic steel --- irradiation --- nanoindentation --- hardness --- transmission electron microscopy (TEM) --- microstructure --- high-entropy alloys --- high-pressure torsion --- microstructure evolution --- twinning --- mechanical properties --- welded rotor --- weld metal --- impact toughness --- PWHT --- microstructure evolution --- Cu-Cr-Zr --- precipitation --- orientation relationship --- recrystallization --- annealing twins --- structural steel plate --- nonmetallic inclusions --- rare earth control --- M23C6 --- ion irradiation --- M6C --- amorphization --- RAFM steels --- hot stamping --- press hardening --- martensitic expansion --- force peak --- cycle time --- high-Mn steel --- deformation twinning --- dynamic recrystallization --- grain refinement --- work hardening --- in situ tensile testing --- super duplex stainless steel --- SDSS --- low-temperature --- ?-phase --- SEM --- EBSD --- microstructure analysis --- n/a

Listing 1 - 10 of 13 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (13)


License

CC by-nc-nd (13)


Language

eng (10)

english (3)


Year
From To Submit

2019 (10)

2018 (3)

-->