Search results: Found 19

Listing 1 - 10 of 19 << page
of 2
>>
Sort by
Yeast Biotechnology

Author:
ISBN: 9783038424437 9783038424420 Year: Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biology
Added to DOAB on : 2017-06-28 09:30:16
License:

Loading...
Export citation

Choose an application

Abstract

Yeasts are truly fascinating microorganisms. Due to their diverse and dynamic activities, they have been used for the production of many interesting products, such as beer, wine, bread, biofuels, and biopharmaceuticals. Saccharomyces cerevisiae (brewers’ or bakers’ yeast) is the yeast species that is surely the most exploited by man. Saccharomyces is a top choice organism for industrial applications, although its use for producing beer dates back to at least the 6th millennium BC. Bakers’ yeast has been a cornerstone of modern biotechnology, enabling the development of efficient production processes. Today, diverse yeast species are explored for industrial applications. This Special Issue is focused on some recent developments of yeast biotechnology, i.e., bioethanol, wine and beer, and enzyme production. Additionally, the new field of yeast nanobiotechnology is introduced and reviewed.

Non-conventional Yeast in the Wine Industry

Authors: --- ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889450534 Year: Pages: 177 DOI: 10.3389/978-2-88945-053-4 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2017-07-06 13:27:36
License:

Loading...
Export citation

Choose an application

Abstract

Saccharomyces cerevisiae strains that exhibit high ethanol tolerance and excellent fermentative ability are extensively used in winemaking as selected starters. However, a side-effect of the widespread use of these commercial starter cultures is the elimination of native microbiota, which might result in wines with similar analytical and sensory properties, depriving them from the variability, complexity and personality that define the typicality of a wine. Nonetheless, a way of balancing control and yeast population diversity during wine fermentation is the selection of non-Saccharomyces yeasts with optimal oenological traits. Therefore, a current trend in enology is the implementation of mixed- or multi-starters cultures, combining S. cerevisiae that remains the yeast species required for the completion of fermentation and non-Saccharomyces yeasts isolated from the native flora of grape juices. This research topic mainly deals with possible applications of different non-Saccharomyces yeast to wine production such as aroma production, ethanol reduction or biocontrol.Saccharomyces cerevisiae strains that exhibit high ethanol tolerance and excellent fermentative ability are extensively used in winemaking as selected starters. However, a side-effect of the widespread use of these commercial starter cultures is the elimination of native microbiota, which might result in wines with similar analytical and sensory properties, depriving them from the variability, complexity and personality that define the typicality of a wine. Nonetheless, a way of balancing control and yeast population diversity during wine fermentation is the selection of non-Saccharomyces yeasts with optimal oenological traits. Therefore, a current trend in enology is the implementation of mixed- or multi-starters cultures, combining S. cerevisiae that remains the yeast species required for the completion of fermentation and non-Saccharomyces yeasts isolated from the native flora of grape juices. This research topic mainly deals with possible applications of different non-Saccharomyces yeast to wine production such as aroma production, ethanol reduction or biocontrol.

Emerging Functions of Septins

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889452873 Year: Pages: 126 DOI: 10.3389/978-2-88945-287-3 Language: English
Publisher: Frontiers Media SA
Subject: Science (General) --- Biology
Added to DOAB on : 2018-02-27 16:16:44
License:

Loading...
Export citation

Choose an application

Abstract

Together with the microfilament, microtubule and intermediate-filament networks, septins constitute an integral part of the eukaryotic cytoskeleton. Historically identified as proteins critical for septum formation in the budding yeast Saccharomyces cerevisiae, septin family GTPases are expressed and participate in the process of cytokinesis in most eukaryotes except higher plants. More than a dozen septin genes in mammals, together with various splice variants displaying tissue-specific expression patterns and flexible hetero-polymeric higher-order assembly achieve an unfathomable complexity superior to the other cytoskeletal components. Even though the initial studies in the septin field was restricted to their evolutionarily conserved role in cell division, strong expression of septins in the non-dividing cells of the brain generated great interest in understanding their role in neuronal morphogenesis and other aspects of cellular function. On one hand, recent developments indicate complex non-canonical roles for septins in diverse processes ranging from neuronal development to immune response and calcium signaling. On the other hand several lines of data including those from knockout models question the universal role for septins in animal cell cytokinesis. Mammalian hematopoietic cells seem to proliferate and efficiently undergo cytokinesis in the absence of pivotal septin proteins in a context-dependent manner. The lack of septin-dependence of hematopoiesis also opens the possibility of safely targeting septin-dependent cytokinesis for solid-tumor therapy. Thus the septin field is perfectly poised with novel roles for septins being discovered and the basic understanding on septin assembly and its canonical functions constantly revisited. The objective of this research topic was to provide an exclusive platform for discussing these rapid advances in the septin field. With a mixture of reviews and research articles encompassing diverse areas of septin research, ranging from the humble yeast model to human cancer, this ebook will be an interesting reading material for both experts as well as new comers to the septin field.

Keywords

septin --- cytokinesis --- Cilia --- mutation --- GTPase --- cytoskeleton --- yeast --- budding --- SOCE --- cancer

Recombinant protein expression in microbial systems

Authors: ---
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889192946 Year: Pages: 102 DOI: 10.3389/978-2-88919-294-6 Language: English
Publisher: Frontiers Media SA
Subject: Environmental Sciences --- Biotechnology --- General and Civil Engineering --- Microbiology --- Science (General)
Added to DOAB on : 2015-12-10 11:59:07
License:

Loading...
Export citation

Choose an application

Abstract

With the advent of recombinant DNA technology, expressing heterologous proteins in microorganisms rapidly became the method of choice for their production at laboratory and industrial scale. Bacteria, yeasts and other hosts can be grown to high biomass levels efficiently and inexpensively. Obtaining high yields of recombinant proteins from this material was only feasible thanks to constant research on microbial genetics and physiology that led to novel strains, plasmids and cultivation strategies. Despite the spectacular expansion of the field, there is still much room for progress. Improving the levels of expression and the solubility of a recombinant protein can be quite challenging. Accumulation of the product in the cell can lead to stress responses which affect cell growth. Buildup of insoluble and biologically inactive aggregates (inclusion bodies) lowers the yield of production. This is particularly true for obtaining membrane proteins or high-molecular weight and multi-domain proteins. Also, obtaining eukaryotic proteins in a prokaryotic background (for example, plant or animal proteins in bacteria) results in a product that lack post-translational modifications, often required for functionality. Changing to a eukaryotic host (yeasts or filamentous fungi) may not be a proper solution since the pattern of sugar modifications is different than in higher eukaryotes. Still, many advances in the last couple of decades have provided to researchers a wide variety of strategies to maximize the production of their recombinant protein of choice. Everything starts with the careful selection of the host. Be it bacteria or yeast, a broad list of strains is available for overcoming codon use bias, incorrect disulfide bond formation, protein toxicity and lack of post-translational modifications. Also, a huge catalog of plasmids allows choosing for different fusion partners for improving solubility, protein secretion, chaperone co-expression, antibiotic resistance and promoter strength. Next, controlling culture conditions like temperature, inducer and media composition can bolster recombinant protein production. With this Research Topic, we aim to provide an encyclopedic account of the existing approaches to the expression of recombinant proteins in microorganisms, highlight recent discoveries and analyze the future prospects of this exciting and ever-growing field.

DNA Replication Origins in Microbial Genomes

Author:
Book Series: Frontiers Research Topics ISSN: 16648714 ISBN: 9782889197798 Year: Pages: 115 DOI: 10.3389/978-2-88919-779-8 Language: English
Publisher: Frontiers Media SA
Subject: Microbiology --- Science (General)
Added to DOAB on : 2016-04-07 11:22:02
License:

Loading...
Export citation

Choose an application

Abstract

DNA replication, a central event for cell proliferation, is the basis of biological inheritance. Complete and accurate DNA replication is integral to the maintenance of the genetic integrity of organisms. In all three domains of life, DNA replication begins at replication origins. In bacteria, replication typically initiates from a single replication origin (oriC), which contains several DnaA boxes and the AT-rich DNA unwinding element (DUE). In eukaryotic genomes, replication initiates from significantly more replication origins, activated simultaneously at a specific time. For eukaryotic organisms, replication origins are best characterized in the unicellular eukaryote budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. The budding yeast origins contain an essential sequence element called the ARS (autonomously replicating sequence), while the fission yeast origins consist of AT-rich sequences. Within the archaeal domain, the multiple replication origins have been identified by a predict-and-verify approach in the hyperthermophilic archaeon Sulfolobus. The basic structure of replication origins is conserved among archaea, typically including an AT-rich unwinding region flanked by several short repetitive DNA sequences, known as origin recognition boxes (ORBs). It appears that archaea have a simplified version of the eukaryotic replication apparatus, which has led to considerable interest in the archaeal machinery as a model of that in eukaryotes. The research on replication origins is important not only in providing insights into the structure and function of the replication origins but also in understanding the regulatory mechanisms of the initiation step in DNA replication. Therefore, intensive studies have been carried out in the last two decades. The pioneer work to identify bacterial oriCs in silico is the GC-skew analysis. Later, a method of cumulative GC skew without sliding windows was proposed to give better resolution. Meanwhile, an oligomer-skew method was also proposed to predict oriC regions in bacterial genomes. As a unique representation of a DNA sequence, the Z-curve method has been proved to be an accurate and effective approach to predict bacterial and archaeal replication origins. Budding yeast origins have been predicted by Oriscan using similarity to the characterized ones, while the fission yeast origins have been identified initially from AT content calculation. In comparison with the in silico analysis, the experimental methods are time-consuming and labor-intensive, but convincing and reliable. To identify microbial replication origins in vivo or in vitro, a number of experimental methods have been used including construction of replicative oriC plasmids, microarray-based or high-throughput sequencing-based marker frequency analysis, two-dimensional gel electrophoresis analysis and replication initiation point mapping (RIP mapping). The recent genome-wide approaches to identify and characterize replication origin locations have boosted the number of mapped yeast replication origins. In addition, the availability of increasing complete microbial genomes and emerging approaches has created challenges and opportunities for identification of their replication origins in silico, as well as in vivo and in vitro. The Frontiers in Microbiology Research Topic on DNA replication origins in microbial genomes is devoted to address the issues mentioned above, and aims to provide a comprehensive overview of current research in this field.

Wine Fermentation

Author:
ISBN: 9783038976745 Year: Pages: 176 DOI: 10.3390/books978-3-03897-675-2 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Biotechnology --- Technology (General)
Added to DOAB on : 2019-04-05 11:07:22
License:

Loading...
Export citation

Choose an application

Abstract

This book is a printed edition of the Special Issue Wine Fermentation that was published in Fermentation

Enological Repercussions of Non-Saccharomyces Species

Author:
ISBN: 9783039215584 9783039215591 Year: Pages: 218 DOI: 10.3390/books978-3-03921-559-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology
Added to DOAB on : 2019-12-09 11:49:16
License:

Loading...
Export citation

Choose an application

Abstract

From the beginning of this century, non-Saccharomyces yeasts have taken increased relevance in wine processing. Several biotechnological companies now produce non-Saccharomyces yeasts at an industrial level to improve aroma or flavor, stabilize wine, produce biological acidification, or conversely metabolize malic acid. Species like Torulaspora delbrueckii, Metschnikowia pulcherrima, Kloeckera apiculata, Lachancea thermotolerans, Schizosaccharomyces pombe, and several others are common due to the technological applications they have in sensory quality but also in wine ageing and stabilization. Moreover, spoilage non-Saccharomyces yeasts like Brettanomyces bruxellensis, Saccharomycodes ludwigii, and Zygosacharomyces bailii are becoming important because of the alterations they are able to produce in high-quality wines. New strategies to control these defective yeasts have been developed to control them without affecting sensory quality. The knowledge of the physiology, ecology, biochemistry, and metabolomics of these yeasts can help to better use them in controlling traditional problems such as low fermentative power, excessive volatile acidity, low implantation under enological conditions, and sensibility to antimicrobial compounds like sulfites traditionally used in wine processing. This Special Issue intends to compile current research and revised information on non-Saccharomyces yeasts with enological applications to facilitate the use and the understanding of this biotechnological tool. In 1 year this SI has globally more than 15kdownloads and produced more than 30 citations.

Keywords

Lachancea thermotolerans --- Kluyveromyces thermotolerans --- acidification --- wines --- sequential fermentations --- non-Saccharomyces --- non-Saccharomyces yeasts --- Wickerhamomyces anomalus --- Pichia anomala --- enzymes --- glycosidases --- acetate esters --- biocontrol --- mixed starters --- wine --- wine --- Zygosaccharomyces rouxii --- re-fermentation --- spoilage-control --- non-Saccharomyces --- high-ethanol --- Schizosaccharomyces pombe --- oenological uses --- maloalcoholic fermentation --- stable pigments --- wine safety --- non-Saccharomyces yeast --- Saccharomycodes ludwigii --- S. ludwigii --- spoilage yeasts’ control --- ageing-on-lees --- non-Saccharomyces --- yeast --- sparkling wine --- nitrogen --- aroma --- Candida stellata --- ecology --- taxonomy --- metabolism --- processing foods --- co-fermentation --- non-Saccharomyces --- genome --- aroma compounds --- anthocyanin --- mixed cultures fermentation --- flavor complexity --- Aureobasidium pullulans --- biotechnological applications --- viticulture --- enzymes --- non-Saccharomyces yeasts --- Torulaspora delbrueckii --- winemaking --- yeast inoculation --- yeast dominance --- wine quality --- genetic improvement --- antimicrobial peptides --- biocontrol --- Brettanomyces bruxellensis --- Candida intermedia --- wine --- off-flavors --- wine acidity --- volatile acidity --- malolactic bacteria --- Lactobacillus plantarum --- Lachancea thermotolerans --- Schizosaccharomyces pombe --- Candida stellate --- Torulaspora delbrueckii --- Zygotorulaspora florentina --- Pichia kudriavzevii --- Stermerella bacillaris --- Metschnikowia pulcherrima --- oenological uses --- enzymes --- stable pigments --- pulcherrimin --- n/a --- n/a

Microbial Fuel Cells 2018

Author:
ISBN: 9783039215355 9783039215348 Year: Pages: 84 DOI: 10.3390/books978-3-03921-534-8 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Technology (General) --- General and Civil Engineering --- Environmental Engineering
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The rapid growth of global energy consumption and simultaneous waste discharge requires more sustainable energy production and waste disposal/recovery technology. In this respect, microbial fuel cell and bioelectrochemical systems have been highlighted to provide a platform for waste-to-energy and cost-efficient treatment. Microbial fuel cell technology has also contributed to both academia and industry through the development of breakthrough sustainable technologies, enabling cross- and multi-disciplinary approaches in microbiology, biotechnology, electrochemistry, and bioprocess engineering. To further spread these technologies and to help the implementation of microbial fuel cells, this Special Issue, entitled “Microbial Fuel Cells 2018”, was proposed for the international journal Energies. This Special Issue mainly covers original research and studies related to the above-mentioned topic, including, but not limited to, bioelectricity generation, microbial electrochemistry, useful resource recovery, system and process design, and the implementation of microbial fuel cells.

Safety and Microbiological Quality

Authors: ---
ISBN: 9783039214914 9783039214921 Year: Pages: 126 DOI: 10.3390/books978-3-03921-492-1 Language: English
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Microbiology
Added to DOAB on : 2019-12-09 11:49:15
License:

Loading...
Export citation

Choose an application

Abstract

The safety and microbiological quality of fermented foods covers complementary aspects of such products. Food fermentation is primary intended to improve food preservation, thereby modifying food properties. However, the management of chemical and microbiological hazards is a leading aspect for innovative processing in this domain. Similarly, microbiological quality in fermented foods is of peculiar importance: all microorganisms with a positive effect, including probiotic bacteria, fermentative bacteria, Saccharomyces and non-Saccharomyces yeasts, can be relevant. The fitness of pro-technological microorganisms impacts nutritional quality, but also sensory properties and processing reliability. This book provides a broad view of factors which determine the safety and microbiological quality of fermented foods. A focus is made on the interconnection between starter properties and the expectations related to a probiotic effect. All chapters underline the involvement of fermented foods towards better resource management and increasing food and nutritional security, especially in developing countries.

Modern Technologies and Their Influence in Fermentation Quality

Author:
ISBN: 9783039289479 / 9783039289486 Year: Pages: 220 DOI: 10.3390/books978-3-03928-948-6 Language: eng
Publisher: MDPI - Multidisciplinary Digital Publishing Institute
Subject: Science (General) --- Biology --- Nutrition and Food Sciences
Added to DOAB on : 2020-06-09 16:38:57
License:

Loading...
Export citation

Choose an application

Abstract

During the last few years, industrial fermentation technologies have advanced in order to improve the quality of the final product. Some examples of those modern technologies are the biotechnology developments of microbial materials, such as Saccharomyces and non-Saccharomyces yeasts or lactic bacteria from different genera. Other technologies are related to the use of additives and adjuvants, such as nutrients, enzymes, fining agents, or preservatives and their management, which directly influence the quality and reduce the risks in final fermentation products. Other technologies are based on the management of thermal treatments, filtrations, pressure applications, ultrasounds, UV, and so on, which have also led to improvements in fermentation quality in recent years. The aim of the issue is to study new technologies able to improve the quality parameters of fermentation products, such as aroma, color, turbidity, acidity, or any other parameters related to improving sensory perception by the consumers. Food safety parameters are also included.

Keywords

itaconic acid --- A. terreus --- pH control --- glucose --- kinetic analysis --- Gompertz-model --- biogenic amines --- ethyl carbamate --- ochratoxin A --- sulfur dioxide --- phthalates --- HACCP --- Yeasts --- alcoholic beverages --- resveratrol --- glutathione --- trehalose --- tryptophan --- melatonin --- serotonin --- tyrosol --- tryptophol --- hydroxytyrosol --- IAA --- probiotics --- Torulaspora delbrueckii --- Lachancea thermotolerans --- Metschnikowia pulcherrima --- Schizosaccharomyces pombe --- Pichia kluyveri --- non-Saccharomyces --- biocontrol application --- non-Saccharomyces screening --- SO2 reduction --- lactic acid bacteria --- yeasts --- chemical analyses --- volatile compounds --- sensory evaluation --- shiraz --- low-ethanol wines --- sequential culture --- Hanseniaspora uvarum yeast --- aromatic/sensorial profiles --- narince --- autochthonous --- Saccharomyces cerevisiae --- aroma --- white wine --- cashew apple juice --- non-conventional yeasts --- alcoholic beverages --- aroma profile --- Hanseniaspora guilliermondii --- Torulaspora microellipsoides --- Saccharomyces cerevisiae --- meta-taxonomic analysis --- vineyard soil --- wine-related bacteria --- wine-related fungi --- sequential inoculation --- Saccharomyces --- non-Saccharomyces --- Riesling --- aroma compound --- Torulaspora delbrueckii --- Pichia kluyveri --- Lachancea thermotolerans --- Tannat --- must replacement --- hot pre-fermentative maceration --- wine color --- wine composition --- climate change --- food quality --- viticulture --- wine --- fermentation --- yeast --- Saccharomyces --- non-Saccharomyces --- alcoholic fermentation --- lactic acid bacteria --- malolactic fermentation --- native yeast --- Saccharomyces cerevisiae --- aroma --- Malvar (Vitis vinifera L. cv.) --- white wine --- yeasts --- Bombino bianco --- technological characterization --- enzymatic patterns --- amino acid decarboxylation --- Lachancea thermotolerans --- non-Saccharomyces --- Saccharomyces --- acidity --- food safety --- HACCP --- wine quality --- color --- human health-promoting compounds --- biocontrol --- wine flavor --- low ethanol wine --- Vineyard Microbiota --- wine color --- wine aroma --- climate change

Listing 1 - 10 of 19 << page
of 2
>>
Sort by
Narrow your search

Publisher

MDPI - Multidisciplinary Digital Publishing Institute (15)

Frontiers Media SA (4)


License

CC by-nc-nd (15)

CC by (4)


Language

english (16)

eng (3)


Year
From To Submit

2020 (3)

2019 (11)

2017 (3)

2016 (1)

2014 (1)